УДК 517.3 DOI 10.21685/2072-3040-2019-3-5

Е. Д. Деревянчук, О. В. Фролова

ЗАДАЧА СИНТЕЗА МНОГОСЛОЙНОГО АНИЗОТРОПНОГО ПОКРЫТИЯ В СВЧ-ДИАПАЗОНЕ¹

Аннотация.

Актуальность и цели. Рассматривается актуальная для практики задача синтеза анизотропного многослойного покрытия. Цель исследования — разработать численно-аналитический метод решения задачи синтеза анизотропного многослойного покрытия.

Материалы и методы. Исследуется задача синтеза анизотропного многослойного покрытия: задача сводится к решению задачи оптимизации.

Результаты. Получено численно-аналитическое решение задачи синтеза. Разработан метод решения задач. Проведено тестирование на сериях задач.

Выводы. Полученные алгоритмы решения задачи могут быть использованы при синтезе многослойных анизотропных покрытий.

Ключевые слова: анизотропная диафрагма, задача синтеза, задача оптимизации, тензор диэлектрической проницаемости, тензор магнитной проницаемости, волноводный метод.

E. D. Derevyanchuk, O. V. Frolova

THE SYNTHESIS PROBLEM OF MULTILAYER ANISOTROPIC COATING IN THE MICROWAVE RANGE

Abstract.

Background. The paper is devoted to the one of the urgent problem - the synthesis problem of anisotropic multilayer coating. The purpose of the study is to develop a numerical-analytical method for solving of the synthesis problem of anisotropic multilayer coatings.

Materials and methods. The problem of the synthesis of anisotropic multilayer coating is investigated: the problem is reduced to solving an optimization problem.

Results. The developed algorithms for solving the problem can be used in the synthesis of multilayer anisotropic coatings.

Conclusions. The numerical methods of solving these inverse problems and numerical results can be used in practice to reconstruct electromagnetic characteristics of modern materials.

Keywords: electrodynamics problem, inverse problem, complex permittivity, isotropic, anisotropic material, tensor, permeability tensor, permittivity tensor.

Введение

Данная работа посвящена задаче синтеза многослойного анизотропного покрытия в СВЧ-диапазоне. Задача синтеза покрытия с необходимыми для

 $^{^1}$ Работа поддержана грантом Президента РФ № МК-3604.2018.1, а также грантом Минобрнауки России (госзадание № 1.894.2017/4.6).

[©] Деревянчук Е. Д., Фролова О. В., 2019. Данная статья доступна по условиям всемирной лицензии Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), которая дает разрешение на неограниченное использование, копирование на любые носители при условии указания авторства, источника и ссылки на лицензию Creative Commons, а также изменений, если таковые имеют место.

практики характеристиками исследуется последние десятилетия. В работах А. Н. Тихонова, В. Б. Гласко, А. В. Тихонравова были предложены строгие математические методы решения такого рода задач [1–4]. Начиная с 2000 г. стали разрабатываться и выпускаться образцы новых видов материалов, такие как метаматериалы, наноматериалы [3, 5, 6]. Для практики важно синтезировать покрытия с заданными характеристиками на основе новых видов материалов.

Во многих областях электродинамики оказываются необходимыми покрытия материалов, которые имеют минимальное отражение в диапазоне радиочастот или СВЧ (например, в авиастроении технология снижения заметности объектов в разных областях спектра обнаружения) [1]. Основная идея задачи синтеза заключается в определении структуры покрытия с заданными параметрами (поиск покрытия с оптимальными параметрами для конкретной задачи). Данная задача частично исследовалась авторами работы [7]. В отличие от работы [7], данная статья посвящена синтезу анизотропного покрытия.

Цель данной работы заключается в построении численного метода и вычислительного алгоритма для решения задачи синтеза покрытия с заданными электромагнитными параметрами диэлектрической проницаемости и магнитной проницаемости.

1. Численный метод решения обратной задачи (анизотропная диафрагма)

1.1. Постановка задачи

Рассмотрим в прямоугольной декартовой системе координат волновод $P = \{x: 0 < x_1 < a, 0 < x_2 < b, -\infty < x_3 < \infty\}$, поверхность ∂P которого идеально проводящая.

В волноводе расположена многосекционная диафрагма Q, которая представляет собой параллелепипед $Q = \{x: 0 < x_1 < a, 0 < x_2 < b, 0 < x_3 < l\}$, разделенный на n секций (рис. 1).

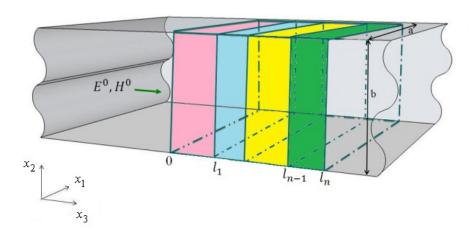


Рис. 1. Волновод с многосекционной диафрагмой

В диафрагме каждая секция заполнена анизотропной средой с диагональными тензорами вида

$$\boldsymbol{\varepsilon}^{(j)} = \begin{pmatrix} \varepsilon_{11}^{(j)} & 0 & 0 \\ 0 & \varepsilon_{22}^{(j)} & 0 \\ 0 & 0 & \varepsilon_{33}^{(j)} \end{pmatrix}, \quad \boldsymbol{\mu}^{(j)} = \begin{pmatrix} \boldsymbol{\mu}_{11}^{(j)} & 0 & 0 \\ 0 & \boldsymbol{\mu}_{22}^{(j)} & 0 \\ 0 & 0 & \boldsymbol{\mu}_{33}^{(j)} \end{pmatrix}, \quad j = (1, \dots, n), \quad (1)$$

где

$$\varepsilon_{ii}^{(j)} = \varepsilon_{ii}^{(j)}(\omega) = \varepsilon_{ii}^{\prime(j)} - i \frac{\sigma_i^{(j)}}{\omega};$$

 $\varepsilon_{ii}^{\prime(j)}$ — вещественная часть $\varepsilon_{ii}^{(j)}$; $\sigma_{i}^{(j)}$ — проводимость в j-й секции; i — индекс компоненты на главной диагонали.

Следует пояснить, что каждой диагональной компоненте ε_{ii} соответствует проводимость σ_i .

Вне диафрагмы $\, \epsilon_0 = 1, \mu_0 = 1 \, . \,$ Внутри волновода распространяется волна вида $\, H_{10} \, :$

$$E_y = \sin\left(\frac{\pi x}{a}\right) A e^{-i\gamma_0 z} .$$

Одномодовость режима (т.е. распространение одной волны в волноводе) достигается следующим условием: $\frac{\pi}{a} < k_0 < \frac{\pi}{b}$, где k_0 — волновое число; a — ширина волновода; b — высота волновода [1].

Электромагнитное поле внутри и вне диафрагмы в волноводе описываются соответствующими системами уравнений Максвелла:

$$\begin{cases} \operatorname{rot} \mathbf{H} = -i\omega \cdot \mathbf{\varepsilon} \mathbf{E}, & \operatorname{rot} \mathbf{H} = -i\omega \cdot \mathbf{\varepsilon}_0 \mathbf{E}, \\ \operatorname{rot} \mathbf{E} = i\omega \cdot \mathbf{\mu} \mathbf{H}, & \operatorname{rot} \mathbf{E} = i\omega \cdot \mathbf{\mu}_0 \mathbf{H}. \end{cases}$$
 (2)

Рассмотрим схему распространения волны в волноводе (рис. 2).

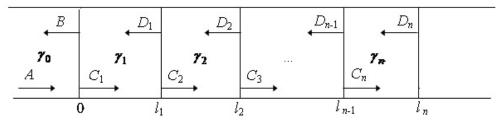


Рис. 2. Распространение волны вне и внутри диафрагмы в волноводе

Полное электрическое поле внутри каждой секции волновода имеет следующий вид:

$$\begin{cases} E_y^{(0)} = \sin\left(\frac{\pi x_1}{a}\right) \left(Ae^{-i\gamma_0 x_3} + Be^{i\gamma_0 x_3}\right), \\ E_y^{(j)} = \sin\left(\frac{\pi x_1}{a}\right) \left(C_j e^{-i\gamma_j x_3} + D_j e^{i\gamma_j x_3}\right), j = (1, n). \end{cases}$$
(3)

На границе раздела сред $L := \{x_3 = 0, x_3 = l_1, \cdots, x_3 = l_{n-1}\}$ (рис. 2) необходимо выполнение граничных условий:

$$[E_{\tau}]_{L} = 0; [H_{\tau}]_{L} = 0,$$
 (4)

где указан скачок предельных значений функций на границе раздела сред L. На границе $x_3=l_n=l$ необходимо выполнение условия в случае идеального проводника:

$$E_{\tau}\big|_{x_3=l} = 0, \tag{5}$$

в случае «хорошего» проводника граничное условие имеет вид

$$E_{y}\big|_{x_{3}=l} = -\zeta H_{x}\big|_{x_{3}=l},$$
 (6)

где $\varsigma = \sqrt{\frac{\mu_{n+1}}{\varepsilon_{n+1}}}$ — поверхностный импеданс среды в секции n+1 .

Следует отметить, что из уравнений Максвелла и вида волны легко установить, что

$$H_x = -\frac{1}{i\omega\mu_{11}^{(j)}} \frac{\partial E_y}{\partial z}.$$
 (7)

Введем следующие обозначения. Пусть $\varepsilon' = \left(\varepsilon_{22}^{\prime(1)}, \varepsilon_{22}^{\prime(2)}, ..., \varepsilon_{22}^{\prime(j)}, ..., \varepsilon_{22}^{\prime(n)}\right)^T -$ вектор значений вещественных частей компонент $\varepsilon_{22}^{\prime(j)}$ каждой секции диафрагмы. Будем предполагать, что существуют ограничения для каждой такой компоненты: $\underline{\varepsilon}_{22}^{(j)} \leq \varepsilon_{22}^{\prime(j)} \leq \overline{\varepsilon}_{22}^{(j)}$ (или $\underline{\varepsilon} \leq \varepsilon' \leq \overline{\varepsilon}$ — в векторной записи, данное неравенство выполняется покомпонентно). Для проводимости имеем следующий вектор значений: $\mathbf{\sigma} = \left(\sigma_2^{(1)}, \sigma_2^{(2)}, ..., \sigma_2^{(j)}, ..., \sigma_2^{(n)}\right)^T$. Ограничения для проводимости известны: $\underline{\sigma}_j \leq \sigma_j \leq \overline{\sigma}_j$, j = (1, ..., n) (или $\underline{\sigma} \leq \underline{\sigma} \leq \overline{\sigma}$ — в векторной записи). Для вектора значений магнитной проницаемости имеем $\mathbf{\mu}_1 = \left(\mu_{11}^{(1)}, \mu_{11}^{(2)}, ..., \mu_{11}^{(j)}, ..., \mu_{11}^{(n)}\right)^T$, $\mathbf{\mu}_3 = \left(\mu_{33}^{(1)}, \mu_{33}^{(2)}, ..., \mu_{33}^{(j)}, ..., \mu_{33}^{(n)}\right)^T$. Пусть для каждой компоненты $\mu_{11}^{(j)}$ имеются следующие ограничения: $\underline{\mu}_{11}^{(j)} \leq \underline{\mu}_{11}^{(j)} \leq \overline{\mu}_{11}^{(j)}$ (или $\underline{\mu}_1 \leq \underline{\mu}_1 \leq \overline{\mu}_1$ — в векторной записи). Пусть для каждой компоненты $\mu_{33}^{(j)}$

имеются следующие ограничения: $\underline{\mu}_{33}^{(j)} \leq \underline{\mu}_{33}^{(j)} \leq \overline{\mu}_{33}^{(j)}$ (или $\underline{\mu}_3 \leq \underline{\mu}_3 \leq \overline{\mu}_3$ — в векторной записи).

Введем следующие обозначения:

$$\beta_{\varepsilon} = \min_{\substack{\underline{\varepsilon} \leq \varepsilon' \leq \overline{\varepsilon}, \\ \overline{\sigma} \leq \sigma \leq \overline{\sigma}}} \max_{\omega_1 \leq \omega \leq \omega_2} |B/A(\omega, \varepsilon', \sigma)|,$$
(8)

$$\beta_{\boldsymbol{\mu}} = \min_{\substack{\underline{\mu}_1 \leq \underline{\mu}_1 \\ \underline{\mu}_3 \leq \underline{\mu}_3 \leq \overline{\mu}_3}} \max_{\omega_1 \leq \omega \leq \omega_2} \left| B/A(\omega, \boldsymbol{\mu}_1, \boldsymbol{\mu}_3) \right|, \tag{9}$$

где |B/A| – модуль коэффициента отражения B/A; β_{ϵ} – минимум из всех значений максимумов модулей коэффициента отражения |B/A| в заданном диапазоне частот $(\omega_1 \le \omega \le \omega_2)$ для диэлектрических проницаемостей из заданных диапазонов для вещественной части $\underline{\varepsilon} \le \underline{\varepsilon}' \le \overline{\varepsilon}$ и проводимости $\underline{\sigma} \le \underline{\sigma} \le \overline{\sigma}$; β_{μ} – минимум из всех значений максимумов модулей коэффициента отражения |B/A| в заданном диапазоне частот $(\omega_1 \le \omega \le \omega_2)$ для тензора магнитной проницаемости, где компоненты тензора рассматриваются из заданных диапазонов $\mu_1 \le \mu_1 \le \overline{\mu}_1$ для компонент $\mu_{11}^{(j)}$ и $\mu_3 \le \mu_3 \le \overline{\mu}_3$ для компонент $\mu_{33}^{(j)}$.

Замечание 1. Будем предполагать, что компоненты $\varepsilon_{22}^{\prime(j)} = \varepsilon_{11}^{\prime(j)} = \varepsilon_{33}^{\prime(j)}$ (т.е. будет рассматриваться изотропный случай заполнения каждой секции диафрагмы).

Замечание 2. Будем предполагать, что компоненты $\mu_{22}^{(j)} = \mu_{11}^{(j)}$ (т.е. будет рассматриваться анизотропный случай заполнения каждой секции диафрагмы).

Постановка задачи синтеза покрытия (оптимизация по параметру диэлектрической проницаемости): найти β_{ϵ} и значения комплексной диэлектрической проницаемости для каждой секции диафрагмы $\epsilon = \epsilon' - \frac{i\sigma}{\omega}$, соответствующие β_{ϵ} .

Постановка задачи синтеза покрытия (оптимизация по параметру тензора магнитной проницаемости): найти β_{μ} и значения компонент тензора магнитной проницаемости для каждой секции диафрагмы μ , соответствующие β_{u} .

Пояснения к постановке задачи. Суть задачи состоит в нахождении минимума β_{ϵ} (или β_{μ}) из всех максимальных значений модуля коэффициента отражения |B/A| в заданном диапазоне частот ($\omega_{l} \leq \omega \leq \omega_{2}$) и соответствующие значения электромагнитных параметров либо комплексной диэлектрической проницаемости ϵ для каждой секции диафрагмы, либо значения компонент тензоров магнитной проницаемости μ .

На границе во всех секциях, кроме последней, выполняются условия сопряжения (формула (4)).

На границе l_n рассмотрим следующие случаи:

- 1) секция n+1 заполнена идеальным проводником. Тогда на границе l_n справедливо условие (5);
- 2) секция n+1 заполнена «хорошим» проводником. Тогда на границе справедливо условие (6).

В секции n+1, упомянутой выше, наблюдается, как теперь известно, импеданс и там же можно установить *скин-эффект* (в случае хорошего проводника). В случае рассмотрения идеального проводника наблюдается полное отражение с выполнением условия (5).

2. Численный метод

Данная глава посвящена численному методу решения задачи синтеза многослойного анизотропного покрытия в СВЧ-диапазоне.

2.1. Численный метод решения задачи синтеза (оптимизация по диэлектрической проницаемости)

Задача синтеза сводится к решению задачи оптимизации и состоит из двух частей:

- 1. В необходимом для исследования диапазоне частот сначала осуществляется поиск максимального модуля коэффициента отражения |B/A| для каждого значения вектора вещественной части диэлектрической проницаемости ε из диапазона $\varepsilon \le \varepsilon' \le \overline{\varepsilon}$ и вектора проводимости σ ($\sigma \le \sigma \le \overline{\sigma}$).
- 2. Далее происходит поиск необходимых значений компонент вектора ϵ и σ , при котором β_{ϵ} принимал бы минимальные значения, то есть решается задача минимизации (см. формулу (8)).

Подставляя уравнения (3) в граничные условия (4) и (6), имеем

$$\begin{cases}
A + B = C_{1} + D_{1}, \\
\frac{\gamma_{0}}{\mu_{0}} (B - A) = \frac{\gamma_{1}}{\mu_{11}^{(1)}} (D_{1} - C_{1}), \\
C_{j} e^{-i\gamma_{j}l_{j}} + D_{j} e^{i\gamma_{j}l_{j}} = C_{j+1} e^{-i\gamma_{j+1}l_{j}} + D_{j+1} e^{i\gamma_{j+1}l_{j}}, \quad j = (1; n-1), \\
\frac{\gamma_{j}}{\mu_{11}^{(j)}} (D_{j} e^{i\gamma_{j}l_{j}} - C_{j} e^{-i\gamma_{j}l_{j}}) = \frac{\gamma_{j+1}}{\mu_{11}^{(j+1)}} \left(D_{j+1} e^{i\gamma_{j+1}l_{j}} - C_{j+1} e^{-i\gamma_{j+1}l_{j}} \right);
\end{cases} (10)$$

$$C_n e^{-i\gamma_n l_n} + D_n e^{i\gamma_n l_n} = 0; (11)$$

$$C_n e^{-i\gamma_n l_n} + D_n e^{i\gamma_n l_n} = \frac{\varsigma}{i\omega \mu_{11}^{(n)}} \frac{\gamma_n}{\mu_{11}^{(n)}} \left(D_n e^{i\gamma_n l_n} - C_n e^{-i\gamma_n l_n} \right). \tag{12}$$

Таким образом, в случае идеального проводника имеем систему уравнений (10) и (11), в случае «хорошего» проводника — (10) и (12). Решая дан-

ные системы, получим следующие выражения для модуля коэффициента отражения |B/A| в случае «хорошего» проводника:

$$|B/A| = \frac{\left| \frac{\gamma_{n-1}}{\mu_{11}^{(n-1)}} p_n^{(-)} + \frac{\gamma_n}{\mu_{11}^{(n)}} q_n^{(-)} \frac{Te^{i\gamma_n(2l_n - l_{n-1})} + e^{i\gamma_n l_{n-1}}}{Te^{i\gamma_n(2l_n - l_{n-1})} - e^{i\gamma_n l_{n-1}}} \right|}{\left| \frac{\gamma_{n-1}}{\mu_{11}^{(n-1)}} p_n^{(+)} - \frac{\gamma_n}{\mu_{11}^{(n)}} q_n^{(+)} \frac{Te^{i\gamma_n(2l_n - l_{n-1})} + e^{i\gamma_n l_{n-1}}}{Te^{i\gamma_n(2l_n - l_{n-1})} - e^{i\gamma_n l_{n-1}}} \right|},$$

$$\begin{pmatrix} p_1 \\ q_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} p_2^{(\pm)} \\ q_2^{(\pm)} \end{pmatrix} = \begin{pmatrix} \frac{\gamma_{j-1}}{\mu_{11}^{(j-1)}} p_1 \cos \alpha_j \pm \frac{\gamma_j}{\mu_{11}^{(j)}} q_1 i \sin \alpha_j \\ \frac{\gamma_{j-1}}{\mu_{11}^{(j-1)}} p_1 i \sin \alpha_j \pm \frac{\gamma_j}{\mu_{11}^{(j)}} q_1 \cos \alpha_j \end{pmatrix},$$

$$(13)$$

$$\begin{pmatrix} p_{j+1}^{(\pm)} \\ q_{j+1}^{(\pm)} \end{pmatrix} = \begin{pmatrix} \frac{\gamma_{j-1}}{\mu_{11}^{(j-1)}} \, p_j^{(\pm)} \cos \alpha_j + \frac{\gamma_j}{\mu_{11}^{(j)}} \, q_j^{(\pm)} i \sin \alpha_j \\ \frac{\gamma_{j-1}}{\mu_{11}^{(j-1)}} \, p_j^{(\pm)} i \sin \alpha_j + \frac{\gamma_j}{\mu_{11}^{(j)}} \, q_j^{(\pm)} \cos \alpha_j \end{pmatrix}, j = (1, n) \, ,$$

$$T = \frac{\frac{\varsigma}{i\omega\mu_{11}^{(n)}} \frac{\gamma_n}{\mu_{11}^{(n)}} - 1}{\frac{\varsigma}{i\omega\mu_{11}^{(n)}} \frac{\gamma_n}{\mu_{11}^{(n)}} + 1},$$

и T=-1 — в случае идеального проводника. Следует отметить, что вывод формул для коэффициентов p_j,q_j более подробно представлен в работе [6].

Далее, решая задачу оптимизации, состоящую из двух частей, описанных выше, находим искомые значения векторов ϵ и σ .

2.2. Численный метод решения задачи синтеза (оптимизация по магнитной проницаемости)

В отличие от численного метода решения задачи синтеза по диэлектрической проницаемости, поиск максимального модуля значения осуществляется для каждого значения вектора магнитной проницаемости.

Задача синтеза сводится к решению задачи оптимизации и состоит из двух частей:

1. В необходимом для исследования диапазоне частот сначала осуществляется поиск максимального модуля коэффициента отражения |B/A| (13) для каждого значения векторов магнитной проницаемости $\underline{\mu}_1 \leq \underline{\mu}_1$ и $\underline{\mu}_3 \leq \underline{\mu}_3$.

2. Далее происходит поиск необходимых значений компонент векторов μ_1, μ_3 , при которых β_{μ} принимал бы минимальные значения, т.е. решается задача минимизации (см. формулу (9)).

3. Численные результаты

В данном пункте представлены численные результаты для двухсекционной диафрагмы.

Первая серия задач посвящена задаче синтеза многослойного анизотропного покрытия в СВЧ-диапазоне (синтез происходит по параметрам диэлектрической проницаемости, т.е. определяем значения диэлектрических проницаемостей в каждой секции покрытия).

Во второй серии задач рассматривается задача синтеза многослойного анизотропного покрытия в СВЧ-диапазоне (синтез происходит по параметрам магнитной проницаемости, т.е. определяем значения магнитных проницаемостей в каждой секции анизотропного покрытия).

В первой и второй сериях задач на границе $x = l_n$ расположен идеальный проводник.

В третьей и четвертой сериях задач рассмотрены задачи синтеза в случае, когда на границе диафрагмы расположен «хороший» проводник.

В тремьей серии задач оптимизация происходит по параметрам диэлектрической проницаемости.

В четвертой серии задач оптимизация происходит по параметрам магнитной проницаемости.

3.1. Задачи синтеза (оптимизация по диэлектрической проницаемости в случае идеального проводника)

В данном пункте рассмотрены задачи, направленные на определение значения диэлектрических проницаемостей в каждой секции покрытия в зависимости от выбора тех или иных параметров диафрагмы. Следует отметить, что $1,6 \le \omega \le 3$, N — количество точек разбиения диапазона частот (значение N разное для каждой задачи).

Рассмотрим пример 1. Исходные данные: параметры волновода: ширина a=2 см, высота b=1 см, толщина секций диафрагмы $l_1=0,75$ см, $l_2=1,4$ см, $\epsilon_0=1$, $\mu_0=1$, диапазон значений $2 \le \epsilon_1 \le 100$, $9 \le \epsilon_2 \le 15$, $1,2 \le \sigma_1 \le 3$, $1,2 \le \sigma_2 \le 3$, N=20.

Графически результаты представлены на рис. 3.

Результат решения задачи синтеза (пример 1) для нахождения значения диэлектрической проницаемости каждой секции двухсекционной диафрагмы приведем в виде табл. 1.

Рассмотрим пример 2, который отличается от примера 1 значениями параметров толщин $l_1,\ l_2$.

Приведем в сводной таблице (табл. 2) результаты решения задач синтеза для нескольких примеров.

Анализируя полученные результаты, приходим к выводу, что при выборе материала диапазон ε не должен превышать значений $\varepsilon \ge 20$, тогда |B/A| не превзойдет значений 0,7.

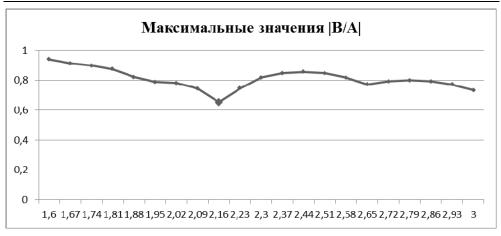


Рис. 3. Численные результаты решения задачи синтеза. График зависимости |B/A| от частоты (пример 1)

Таблица 1 Оптимизация по ϵ . Идеальный проводник (пример 1)

Диэлектрическая проницаемость $\epsilon_{ll}^{(1)}$ и проводимость $\sigma_{l}^{(1)}$	6,00; 1,2
Диэлектрическая проницаемость $\epsilon_{11}^{(2)}$ и проводимость $\sigma_{1}^{(2)}$	13; 1,2
$\operatorname{Min} \max (B/A)$	0,6401

Таблица 2 Сводная таблица. Задачи синтеза (оптимизация по диэлектрической проницаемости в случае идеального проводника)

Примеры	B/A	$\epsilon_{11}^{(1)}$ и $\sigma_{1}^{(1)}$	$\epsilon_{11}^{(2)}$ и $\sigma_{1}^{(2)}$
1	0,64	6,00; 1,2	13,00; 1,2
2	0,65	4,00; 1,2	11,00; 1,2
3	0,67	6,00; 1,19	13,00; 1,1
4	0,65	6,00; 1,1	13,00; 1,5
5	0,65	6,00; 1,1	13,00; 1,1
6	0,82	34,67; 1,2	34,67; 1,2
7	0,711	67,33; 2,4	13,00; 3,23

3.2. Задачи синтеза (оптимизация по магнитной проницаемости в случае идеального проводника)

Вторая серия задач посвящена задаче синтеза многослойного анизотропного покрытия в СВЧ-диапазоне (синтез происходит по параметрам магнитной проницаемости, т.е. определяем значения магнитных проницаемостей в каждой секции анизотропного покрытия).

Рассмотрены задачи синтеза для двухслойной анизотропной диафрагмы, помещенной в прямоугольный волновод.

Рассмотрим пример 1. Исходные данные: параметры волновода: ширина a=2 см, высота b=1 см, толщина секций диафрагмы $l_1=0,65$ см,

$$\begin{split} &l_2=1,3 \quad \text{ см}, \quad \epsilon_0=1 \,, \quad \mu_0=1 \,, \quad \epsilon^{(1)} \left(\omega\right)=\epsilon_1^{(1)}-\frac{\sigma_1^{(1)}}{\omega} \quad \left(\epsilon_1^{(1)}=8 \,, \quad \sigma_1^{(1)}=3 \,\right), \\ &\epsilon^{(2)} \left(\omega\right)=\epsilon_1^{(2)}-\frac{\sigma_1^{(2)}}{\omega} \quad \left(\epsilon_1^{(2)}=10 \,, \quad \sigma_1^{(2)}=3 \,\right), \quad \text{диапазон значений } 2 \leq \mu_{11}^{(1)} \leq 8 \,, \\ &1 \leq \mu_{11}^{(2)} \leq 5 \,, \ 2 \leq \mu_{11}^{(1)} \leq 8 \,, \ 4 \leq \mu_{33}^{(1)} \leq 10 \,, \ 3 \leq \mu_{33}^{(2)} \leq 9 \,, \ 1,6 \leq \omega \leq 3 \,, \ N_{\mu}=10 \,. \end{split}$$
 Численые результаты решения задачи представлены в табл. 3.

Таблица 3 Оптимизация по µ. Идеальный проводник (пример 1)

$\operatorname{Min} \operatorname{Max} (B/A)$	ω	$\mu_{11}^{(1)}$	$\mu_{33}^{(1)}$	$\mu_{11}^{(2)}$	$\mu_{33}^{(2)}$
0,467	2,86	2,00	4,00	1,00	3,00

Рассмотрим результаты решения нескольких примеров, которые отличаются от предыдущей задачи параметрами диапазона магнитной проницаемости каждой секции диафрагмы (табл. 4).

Таблица 4 Сводная таблица. Задачи синтеза (оптимизация по магнитной проницаемости в случае идеального проводника)

Примеры	$\hat{\mu}_1$	B/A	$\hat{\mu}_2$
1	$ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} $	0,47	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} $
2	$ \begin{pmatrix} 7,6 & 0 & 0 \\ 0 & 7,6 & 0 \\ 0 & 0 & 8,6 \end{pmatrix} $	0,13	$ \begin{pmatrix} 5,6 & 0 & 0 \\ 0 & 5,6 & 0 \\ 0 & 0 & 5,6 \end{pmatrix} $
3	$ \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 8 \end{pmatrix} $	0,16	$ \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix} $
4	$ \begin{pmatrix} 7,6 & 0 & 0 \\ 0 & 7,6 & 0 \\ 0 & 0 & 8,6 \end{pmatrix} $	0,104	$ \begin{pmatrix} 5,6 & 0 & 0 \\ 0 & 5,6 & 0 \\ 0 & 0 & 5,6 \end{pmatrix} $

Анализируя полученные результаты, обобщенные в табл. 4, приходим к следующему выводу: при значениях μ < 20 модуль коэффициента отражения |B/A| достаточно мал, значения |B/A| не превосходят 0,5.

3.3. Задачи синтеза (оптимизация по диэлектрической проницаемости в случае «хорошего» проводника)

Третья серия задач посвящена задаче синтеза многослойного анизотропного покрытия в СВЧ-диапазоне (синтез происходит по параметрам диэлектрической проницаемости, т.е. определяем значения диэлектрических проницаемостей в каждой секции анизотропного покрытия) в случае, когда на границе $x=l_n$ расположен «хороший» проводник. Рассмотрены задачи синтеза для двухслойной анизотропной диафрагмы, помещенной в прямоугольный волновод.

Рассмотрим пример 1. Исходные данные: параметры волновода: a=2 см, b=1 см, толщины секций диафрагмы $l_1=0,75$ см, $l_2=1,4$ см, $\epsilon_0=1$,

$$\begin{split} &\mu_0=1\;,\;\mu^{(3)}=10\;,\;\epsilon^{(3)}=2\;,\;T\left(\omega\right)=-\frac{1}{i\omega}\sqrt{\frac{\mu^{(3)}}{\epsilon^{(3)}}}\;,\;\text{диапазон значений}\;\;2\leq\epsilon_1\leq100\;,\\ &9\leq\epsilon_2\leq15\;,\;1,2\leq\sigma_1\leq3\;,\;1,2\leq\sigma_2\leq3\;,\;N_{\varpi}=20\;. \end{split}$$

Численые результаты решения задачи представлены в табл. 5.

Таблица 5 Оптимизация по ϵ . «Хороший» проводник (пример 1)

Диэлектрическая проницаемость $ \epsilon_{l l}^{(1)} $ и проводимость $ \sigma_{l}^{(1)} $	4; 1,09
Диэлектрическая проницаемость $\epsilon_{ll}^{(2)}$ и проводимость $\sigma_{l}^{(2)}$	11; 1,09
$\operatorname{Min}\operatorname{Max}\left(B/A\right)$	0,6759

Рассмотрим результаты решения задач синтеза, приведенные в сводной табл. 6.

Таблица 6 Сводная таблица. Задачи синтеза (оптимизация по диэлектрической проницаемости в случае «хорошего» проводника)

Примеры	B/A	$\mathcal{E}_{ ext{l}}$	$oldsymbol{arepsilon}_2$
1	0,68	4; 1,09	11; 1,09
2	0,73	4; 1,09	11; 1,09
3	0,674	6; 1,09	13; 1,09
4	0,712	4; 1,02	11; 1,28

Анализ табл. 6 показывает, что значения |B/A| при одних и тех же исходных данных в случае «хорошего» проводника больше, чем в случае, когда на границе $x = l_n$ расположен идеальный проводник.

Заключение

Таким образом, в данной работе проведено исследование задачи синтеза многослойного анизотропного покрытия в СВЧ-диапазоне. Рассмотрены четыре типа задач, отличающиеся друг от друга выбором параметра оптимизации (диэлектрической проницаемости или магнитной проницаемости) и вида проводника на границе с диафрагмой (либо идеальный проводник, либо «хороший» проводник).

Анализ полученных численных результатов показал, что:

- метод позволяет находить оптимальные электромагнитные параметры материалов из некоторого заданного диапазона, которые приводили бы к минимальному отражению от поверхности данного материала;
- метод можно использовать для оптимизации как по диэлектрической проницаемости, так и по магнитной.
- разработанный численно-аналитический метод может быть использован при синтезе покрытий с заданными характеристиками на основе современных видов материалов.

Библиографический список

- 1. Гласко, В. Б. О синтезе многослойных покрытий / В. Б. Гласко, А. Н. Тихонов, А. В. Тихонравов // Журнал вычислительной математики и математической физики. 1974. Т. 14, № 1. С. 135—144.
- 2. **Свешников**, **А. Г.** Математические методы в задачах анализа и синтеза слоистых сред / А. Г. Свешников, А. В. Тихонравов // Математическое моделирование. 1989. Т. 1, № 7. С. 13–38.
- 3. Usanov, D. A. Determination of the metalnanometer layer thicknesss and semiconductor conductivity in metal-semiconductor structures from electromagnetic reflection and transmission spectra / D. A. Usanov, A. V. Skripal, A. V. Abramov, A. S. Bogolyubov // Tech. Phys. 2006. Vol. 51 (5). P. 644–649.
- Tikhonravov, A. V. Designing of coatings for femtosecond lasers with phase derivatives targets / A. V. Tikhonravov, M. K. Trubetskov, U. Keller, N. Matuschek // Advances in Optical Interference Coatings / ed. C. Amra, A. Macleod. 1999. Vol. 3738. P. 221–229. (Proceedings of SPIE).
- 5. **Martin, N.** Reconstruction of the constitutive parameters for an omega material in a rectangular waveguide / N. Martin, H. Sailing // IEEE Transactions On Microwave Theory Techniques. 1995. Vol. 43, № 6.
- 6. **Shamonina**, E. Slow waves in magnetic metamaterials: history, fundamentals and applications / E. Shamonina // Phys. Stat. Sol. b. 2008. Vol. 245. P. 1471–1482.
- 7. **Derevyanchuk, E. D.** Synthesis Problem and Mathematical Modeling of Multilayered Absorbing Coating / E. D. Derevyanchuk, A. S. Shutkov and Yu. G. Smirnov // Nonlinear and Inverse Problems in Electromagnetics (PIERS 2017). Springer Proceedings in Mathematics & Statistics book series, 2017. P. 19–27. URL: www.link. springer.com/chapter/10.1007%2F978-3-319-94060-1_2

References

- 1. Glasko V. B., Tikhonov A. N., Tikhonravov A. V. *Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki* [Journal of calculus mathematics and mathematical physics]. 1974, vol. 14, no. 1, pp. 135–144. [In Russian]
- 2. Sveshnikov A. G., Tikhonravov A. V. *Matematicheskoe modelirovanie* [Math modeling]. 1989, vol. 1, no. 7, pp. 13–38. [In Russian]
- 3. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S. *Tech. Phys.* 2006, vol. 51 (5), pp. 644–649.
- 4. Tikhonravov A. V., Trubetskov M. K., Keller U., Matuschek N. *Advances in Optical Interference Coatings*. 1999, vol. 3738, pp. 221–229. (Proceedings of SPIE).
- 5. Martin N., Sailing H. *IEEE Transactions On Microwave Theory Techniques*. 1995, vol. 43, no. 6.

- 6. Shamonina E. Phys. Stat. Sol. b. 2008, vol. 245, pp. 1471-1482.
- Derevyanchuk E. D., Shutkov A. S. and Smirnov Yu. G. Nonlinear and Inverse Problems in Electromagnetics (PIERS 2017). Springer Proceedings in Mathematics & Statistics book series, 2017, pp. 19–27. Available at: www.link.springer.com/chapter/10.1007%2F978-3-319-94060-1_2

Деревянчук Екатерина Дмитриевна

кандидат физико-математических наук, научный сотрудник, научноисследовательский центр «Суперкомпьютерное моделирование в электродинамике», Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: katyader11@yandex.ru

Фролова Ольга Вячеславовна

студентка, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: olga.fov@yandex.ru

Derevyanchuk Ekaterina Dmitrievna

Candidate of physical and mathematical sciences, research assistant, the research center of "Supercomputer modeling in electrodynamics", Penza State University (40, Krasnaya street, Penza, Russia)

Frolova Ol'ga Vyacheslavovna

Student, Penza State University (40, Krasnaya street, Penza, Russia)

Образец цитирования:

Деревянчук, Е. Д. Задача синтеза многослойного анизотропного покрытия в СВЧ-диапазоне / Е. Д. Деревянчук, О. В. Фролова // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2019. - № 3 (51). - C. 63-75. - DOI 10.21685/2072-3040-2019-3-5.